## Focussing Review

# Enantiomeric Separation by CEC Using Chiral Stationary Phases

Masaru Kato\* and Toshimasa Toyo'oka

University of Shizuoka, School of Pharmaceutical Sciences 52-1, Yada, Shizuoka, Shizuoka, 422-8526, Japan Received for review June 11, 2001. Accepted September 25, 2001.

#### Abstract

Capillary electrochromatography (CEC) is now a promising technique for enantiomeric separation, because of the high separation efficiency of the technique. In the last few years, many chiral stationary phases (CSPs) were prepared for CEC and acidic, neutral, and basic enantiomers were separated by these CSPs. These CSPs are classified into three types : (I) open tubular capillary, (II) packed capillary and (III) monolithic capillary. In this review, we evaluate these types of CSPs and compared separation conditions (inner diameter of capillary and mobile phase) and data (theoretical plate number, separation factor and resolution) by these CSPs.

Keywords: capillary electrochromatography, enantiomeric separation, chiral stationary phase

#### 1. Introduction

Capillary electrochromatography (CEC) is a hybrid technique of high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). CEC shows good separation efficiency because it uses electroosmotic flow (EOF) for pumping the mobile phase and can separate both charged and uncharged compounds *via* electrophoresis and chromatographic separation. These principles of CEC could be a main driving force for application in many research fields, including enantiomeric separation. Reviews have been published about CEC and its applications (1-8).

Separation of enantiomers is very important because some enantiomers show completely different biological activities than their optical isomers (9). For example, thalidomide is a sedative drug, but S-(-)-thalidomide is teratogenic. Another example : R-(+) -limonene smells like orange, but S-(-)-limonene smells like lemon. Thus, separation of enantiomers is required to clarify the biological activity of each isomer. However, it is difficult to separate enantiomers, because they show exactly the same chemical and physical properties except for optical rotation. CEC is a suitable separation technique to separate enantiomers, because of its excellent separation efficiency.

Enatiomeric separation by chromatography, including CEC, can be performed in three modes : (I) diastereomer formations, (II) adding chiral selectors to the mobile phase and (III) using chiral stationary phases (CSPs). Reviews and books explain these separation modes in detail (10).

Using CSPs is the most popular mode for enantiomeric separation in HPLC. There are CSPs which are modified with cyclodextrins (CDs), modified CDs, Pirkle type, macrocyclic antibiotics, proteins, cellulose derivatives, etc. These CSPs, well known in HPLC, can also be utilized for packing material for CEC. For chiral mobile phase additive mode, the solubility of chiral selector in the running buffer and the absorbance of chiral selector at the detection wavelength are critical. CSPs do not need to use a chiral selector in the mobile phase and, thus, have no detection problems. Another advantage in CEC is the amount of chiral selector for preparing a separation column, one mg; this is about 100 times less than that for HPLC. Some chiral selectors are expensive because they are difficult to synthesize. In these cases, enantiomeric separation is a suitable application field of CEC. Three different approaches are used for preparation of separation column in CEC : (I) open tubular capillary, (II) packed capillary and (III) monolithic capillary.

In this review, we mainly introduce some recent progress in the field of enantiomeric separation using packed and monolithic capillary, some important papers about open tubular capillary were also introduced. The kinds of chiral selectors and the parameters affecting the separation on CSPs are summarized on Table 1. We do not discuss molecularly imprinted polymer (MIP) based CSP, because many reviews have already been published (11-13) on this subject.

<sup>\*</sup>Corresponding author : Tel, +81-54-264-5654 ; fax, +81-54-264-5593 ; e-mail, daikato@u-shizuoka-ken.ac.jp

| Chiral selector                                                                  | Packing<br>material                                                                                                                                   | Capillary      | Packing                                | Analyte                                                                                                                                                                                                                                                                                                                                                              | Mobile phase                                                                      | Separation                                                            | Remarks                                                                                                                                                                                                             | Reference |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Cyclodextrins and                                                                | modified cycloo                                                                                                                                       | dextrins       | procedure                              |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   | parameters                                                            |                                                                                                                                                                                                                     |           |
| β- and γ-<br>cyclodextrin                                                        | polyacrylamide<br>gel                                                                                                                                 | 75µm<br>I.D.   | m-CEC                                  | DNS derivatives (Leu, Ser, Val, Glu,<br>Asp, Met, Thr, norleucine, norvaline,<br>$\alpha$ -amino- <i>n</i> -butyric acid, Phe, Trp)                                                                                                                                                                                                                                  | 100mM<br>Tris/250mM<br>boric acid (pH<br>8.3)/methanol=90<br>/10                  | α=1.12,<br>N=100000/per<br>column(15cm),<br>Rs=6.4 (DNS-<br>Ser)      | Concentrarion of<br>cyclodextrin, addition<br>of methanol to the<br>buffer and temperature<br>were examined                                                                                                         | [28]      |
| β-cyclodextrin                                                                   | 5μm particle                                                                                                                                          | 50μm<br>I.D.   | p-CEC                                  | benzoin, hexobarbital, DNS-Thr, DNP<br>derivatives ( $\alpha$ -amino- <i>n</i> -butyric acid,<br>norleucine, $\alpha$ -amino- <i>n</i> -caprylic acid,<br>methionine sulfone, Met, ethionine,<br>citrulline, Glu)                                                                                                                                                    | 4mM phosphate,<br>5% acetonitrile<br>(pH 6.8)                                     | a=1.09,<br>N=30000/colum<br>n, HETP=7µm,<br>Rs=1.39<br>(hexobarbital) | Buffer composition,<br>pH, concentration of<br>background electrolyte<br>and organic modifier<br>were studied.<br>Comparisons between<br>the mobile phase<br>additives and packed-<br>tubular systems were<br>made. | [35]      |
| hydroxypropyl<br>-β-<br>cyclodextrin                                             | 5µm silica<br>particle                                                                                                                                | 50µm<br>I.D.   | p-CEC                                  | chlorthalidone, mianserin                                                                                                                                                                                                                                                                                                                                            | 5mM phosphate<br>buffer (pH 6.5),<br>15% acetonitrile                             | α=1.30,<br>N=10000,<br>Rs=3.4<br>(chlorthalidone)                     | Comparisons between<br>the mobile phase<br>additives and using the<br>stationary phase were<br>made.                                                                                                                | [36]      |
| hydroxypropyl<br>-β-<br>cyclodextrin                                             | 5µm<br>sulfonated<br>silica particle                                                                                                                  | 100μm<br>I.D.  | p-CEC                                  | DNS derivatives (Leu, norleucine,<br>Val, Ser, Thr, Trp, Phe, Met, Glu,<br>Asp), silvex, 2-(2,4-<br>dichlorophenoxy)propionic acid, 2-(4-<br>chloro-2-methylphenoxy)propionic<br>acid, 2-(4-chlorophenoxy)propionic<br>acid, 2-(3-chlorophenoxy)propionic<br>acid, 2-(2-chlorophenoxy)propionic<br>acid                                                              | acetonitrile/phos<br>phate buffer<br>(pH5.5)=20/80,<br>1.6 mM sodium<br>phosphate | α=1.30,<br>Rs=2.05 (DNS-<br>Leu)                                      | Organic modifier<br>content, pH and ionic<br>strength were<br>examined.                                                                                                                                             | [37]      |
| permethylated-<br>β-cyclodextrin                                                 | 5µm silica<br>particle                                                                                                                                | 100μm<br>I.D.  | p-CEC,<br>pressure-<br>assisted<br>CEC | mephobarbital, hexobarbital,<br>pentobarbital, 1-methyl-5-(2-propyl)-<br>5-( <i>n</i> -propyl)barbituric acid, 5-ethyl-1-<br>methyl-5-( <i>n</i> -propyl)barbituric acid,<br>benzoin, α-methyl-α-<br>phenylsuccinimide, glutethimide,<br>MTH-Pro, methyl mandelate                                                                                                   | 5mM phosphate<br>buffer (pH<br>7.0)/methanol=4/<br>l                              | α=1.31,<br>N=17600/m,<br>Rs=3.00<br>(mephobarbital)                   | Type and composition<br>of organic modifiers<br>were studied.<br>Comparisons between<br>micro-HPLC and<br>CEC.                                                                                                      | [38]      |
| permethylated<br>β-cyclodextrin<br>(Chirasil-Dex<br>silica)                      | 5μm silica<br>particle<br>(octamethylene<br>spacer)                                                                                                   | 100μm<br>I.D.  | p-CEC,<br>pressure-<br>assisted<br>CEC | mephobarbital, hexobarbital,<br>glutethimide, 1-methyl-5-(2-propyl)-5-<br>( <i>n</i> -propyl)-barbituric acid, 5-ethyl-1-<br>methyl-5-( <i>n</i> -propyl)-barbituric acid,<br>benzoin, α-methyl-α-<br>phenylsuccinimide, γ-phenyl-γ-<br>butyrolactone, MTH-Pro, methyl<br>mandelate, 1-(2-naphthyl)ethanol,<br>mecoprop methyl, diclofop methyl,<br>fenoxaprop ethyl | 20 mM MES<br>buffer (pH<br>6.0)/methanol=1/<br>1                                  | α=1.35,<br>N=65900/m,<br>' Rs=2.43 (MTH-<br>Pro)                      | Type and<br>concentration of<br>buffer, amount and<br>nature of organic<br>modifiers were<br>studied. Comparisons<br>between micro-HPLC<br>and CEC.                                                                 | [20]      |
| permethylated<br>β-cyclodextrin<br>(Chirasil-Dex<br>silica)                      | - 5mm silica<br>particle<br>(octamethylene<br>spacer)                                                                                                 | 100μm<br>I.D.  | m-CEC                                  | mephobarbital, hexobarbital, 1-<br>methyl-5-(2-propyl)-5-( $n$ -<br>propyl)barbituric acid, 5-ethyl-1-<br>methyl-5-( $n$ -propyl)barbituric acid,<br>benzoin, $\alpha$ -methyl- $\alpha$ -<br>phenylsuccinimide, MTH-Pro,<br>mecoprop methyl, fenoxaprop methyl,<br>carprofen, ibuorofen                                                                             | 20mM MES<br>buffer (pH<br>6.0)/methanol=7/<br>3                                   | α=1.20,<br>N=60900/m,<br>' Rs=3.17<br>(mephobarbital)                 | Comparisons capilary<br>LC, pressure-assisted<br>CEC and without<br>pressure-assisted CEC.                                                                                                                          | [39]      |
| 2-hydroxy-3-<br>alloxy-propyl-<br>β-cyclodextrin                                 | polyacrylamide<br>gel(acrylamide<br>ammonium<br>persulfate,<br>N,N'-<br>methylenebisao<br>rylamide,<br>N,N,N',N''-<br>tetramethylethy<br>lenediamine) | 25μm<br>, I.D. | m-CEC                                  | hexobarbital, mephobarbital, warfarin,<br>tropicamid, ibuprofen, propranolol,<br>mephenytoin, hydrobenzoin                                                                                                                                                                                                                                                           | 100mM<br>Tris/150mM<br>boric acid buffer<br>(pH 8.2)                              | $\alpha$ =1.15,<br>N=560000/m,<br>Rs=1.40<br>(warfarin)               | Effect of 2-hydroxy-3-<br>allyloxy-propyl-β-<br>cyclodextrin on<br>separation.                                                                                                                                      | [40]      |
| polymeric-β-<br>cyclodextrin<br>and<br>carboxymethy<br>β-cyclodextrir<br>polymer | polyacrylamide<br>gel<br>l                                                                                                                            | e 75μm<br>I.D. | m-CEC                                  | terbutaline, benzoin                                                                                                                                                                                                                                                                                                                                                 | 200mM<br>Tris/300mM<br>boric acid buffer<br>(pH 9.0)                              | α=1.03,<br>N=26000,<br>Rs=1.21<br>(terbutaline)                       | Chiral selectors were<br>examined.                                                                                                                                                                                  | [41]      |

## Table 1. Chiral selectors and the separation data by CEC.

| allyi<br>carbamoylated<br>β-cyclodextrin                                                      | charged<br>polyacrylamide<br>gel<br>(acrylamide,<br>N,N'-<br>methylenebisac<br>rylamide,<br>$N,N_{*}N',N'$ -<br>tetramethylethy<br>lendiamine,<br>ammonium<br>peroxodisulfate<br>, 2-acrylamido-<br>2-<br>methylpropane<br>sulfonic acid | 75μm<br>I.D.                        | m-CEC                 | terbutaline, propranolol, benzoin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200mM<br>Tris/300mM<br>boric acid buffer<br>(pH 9.0)                                     | α=1.05,<br>N=67000/m,<br>Rs=1.86<br>(terbutaline)                                                   | Reproducibility was<br>studied.                                                                                                              | [42] |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| allyl<br>carbamoylated<br>β-cyclodextrin                                                      | 2-acrylamido-<br>2-<br>methylpropane<br>sulfonic acid                                                                                                                                                                                    | 75μm<br>I.D.                        | m-CEC                 | terbutaline, metaproterenol,<br>isoproterenol, propranolol, pindolol,<br>chlorpheniramine, tryptophan methyl<br>ester, tryptophan ethyl ester, $\alpha$ -<br>methyltryptamine, clenbuterol, 1-(1-<br>naphthalene)ethanol, methyl<br>mandelate, tryptophanol, 1-<br>aminoindan, 1,2,3,4-tetrahydro-1-<br>naphthylamine, 1-(1-<br>naphthyl)ethylamine, primaguine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200mM<br>Tris/300mM<br>boric acid buffer<br>(pH 7.0)<br>containing 10mM<br>of 18-crown-6 | $\alpha$ =1.09, N=150000/m, Rs=4.84 (1-(1-naphthyl)ethyla mine)                                     | Content of chiral<br>selectors were<br>examined.                                                                                             | [43] |
| polymeric-β-<br>cyclodextrin                                                                  | polyacrylamide<br>gel                                                                                                                                                                                                                    | 75μm<br>I.D.                        | m-CEC                 | hipfing the second sec | 200mM<br>Tris/300mM<br>boric acid buffer<br>(pH 8.1)                                     | α=1.03,<br>N=224000/m,<br>Rs=1.69<br>(mephobarbital)                                                | Reproducibility and<br>stability of the column<br>were studied.<br>Negatively and<br>positively charged<br>polyacrylamide were<br>used       | [44] |
| allyl<br>carbamoylated<br>β-cyclodextrin                                                      | polyacrylamide<br>gel                                                                                                                                                                                                                    | 75μm<br>I.D.                        | m-CEC                 | DNS derivatives(Asp, Glu, Ser, Val,<br>norvaline, Leu, norleucine, Thr, Met,<br>Trp, $\alpha$ -amino- <i>n</i> -butyric acid, Phe),<br>phenylmercapturic acid, warfarin, 2-<br>phenoxypropionic acid, <i>N</i> -Fmoc-Val,<br>benzoin, 1-(1-naphthalene)ethanol,<br>terbutaline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200mM<br>Tris/300mM<br>boric acid buffer<br>(pH 8.1)                                     | α=1.10,<br>N=151000/m,<br>Rs=4.30<br>(terbutaline)                                                  | Reproducibility and<br>stability of the column<br>were studied.                                                                              | [45] |
| Small molecules(ar<br>(S)-naproxen                                                            | nino acids deriv<br>3µm silica<br>particle                                                                                                                                                                                               | v <b>atives an</b><br>100μm<br>I.D. | d Pirkle typ<br>p-CEC | e)<br>5 neutral analyte (DNP derivatives)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25mM MES<br>buffer(pH<br>6.0)/acetonitrile=                                              | α=1.49,<br>N=196000,<br>Rs=8.02 (DNP-                                                               | Run-to-run, day-to-day<br>and column-to-column<br>reproducibility were                                                                       | [46] |
|                                                                                               |                                                                                                                                                                                                                                          |                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/3.5                                                                                    | Val methyl                                                                                          | studied.                                                                                                                                     |      |
| (3 <i>R</i> ,4 <i>S</i> )-<br>Whelk-O                                                         | 3μm silica<br>particle                                                                                                                                                                                                                   | 100µт<br>I.D.                       | p-CEC                 | 5 neutral analyte (DNP derivatives<br>and other aromatic compounds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25mM MES<br>buffer(pH<br>6.0)/acetonitrile=<br>1/3.5                                     | $\alpha$ =3.82,<br>N=200000,<br>Rs=30.95 (N-[1-<br>(4-<br>bromophenyl)]-<br>2,2-<br>dimethylpropion |                                                                                                                                              | [46] |
| (3 <i>R</i> ,4 <i>S</i> )-<br>Whelk-O                                                         | 3.0µm silica<br>particle                                                                                                                                                                                                                 | 100μm<br>I.D.                       | p-CEC                 | more than 30 neutral analytes<br>containing stereogenic center, axe or<br>plane chiral enantiomers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25mM MES<br>buffer(pH<br>6.0)/acetonitrile=<br>1/2                                       | amide)<br>$\alpha$ =1.55,<br>N=178000,<br>Rs=16.65 (DNP-<br>l-<br>phenylethylamin<br>e)             | Buffer concentration,<br>modifier amount,<br>temperature, applied<br>voltage and pH were<br>studied. Comparisons<br>between HPLC and<br>CEC. | [47] |
| (S)-N-3,5-<br>dinitrobenzoyl<br>-l-<br>naphthylglycin<br>e<br>(SUMICHIRA<br>L OA-<br>2500(S)) | 5µm<br>aminopropyl<br>silica particle                                                                                                                                                                                                    | 75μm<br>I.D.                        | p-CEC                 | NBD derivatives (Ala, Gln, Glu, Ile,<br>Met, Phe, Pro, Ser, Thr, Val, 2,3-<br>diaminopropionic acid, 2-<br>aminobutyric acid, 3-aminobutyric<br>acid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5mM phosphate<br>buffer<br>(pH2.5)/acetonitr<br>ile=3/7                                  | HETP=8.7,<br>Rs=4.01 (NBD-<br>Ala)                                                                  |                                                                                                                                              | [48] |

| (S)-N-3,5-<br>dinitrobenzoyl<br>-1-<br>naphthylglycin<br>e<br>(SUMICHIRA<br>L OA-                     | 5μm<br>aminopropyl<br>silica particle                                                                                                        | 75μm<br>I.D.  | m-CEC                                                                        | NBD derivatives (Ala, Gln, Glu, Ile,<br>Met, Phe, Pro, Ser, Thr, Val, 2,3-<br>diaminopropionic acid, 2-<br>aminobutyric acid, 3-aminobutyric<br>acid)                                                           | 5mM phosphate<br>buffer<br>(pH2.5)/acetonitr<br>ile=3/7                      | HETP=14,<br>Rs=4.45 (NBD-<br>Val)                                            | pH and composition of<br>acetonitrile were<br>examined.                                                                                                | [49] |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2500(S))<br>(S)-N-3,5-<br>dinitrophenyla<br>minocarbonyl-<br>valine<br>(SUMICHIRA<br>L OA-3100)       | 5µm<br>aminopropyl<br>silica particle                                                                                                        | 75μm<br>I.D.  | m-CEC                                                                        | NBD derivatives (Ala, Gln, Glu, Met,<br>Pro, Ser, Thr, 2,3-diaminopropionic<br>acid, 2-aminobutyric acid)                                                                                                       | 5mM phosphate<br>buffer<br>(pH3.0)/acetonitr<br>ile=3/7                      | HETP=56,<br>Rs=1.17 (NBD-<br>Val)                                            |                                                                                                                                                        | [49] |
| 2-<br>hydroxyethyl<br>methacrylate<br>( <i>N</i> -L-valine-<br>3,5-<br>dimethylanilid<br>e) carbamate | organic gel<br>(ethylene<br>dimethacrylate,<br>2-acrylamido-<br>2-methyl-1-<br>propansulfonic<br>acid, butyl or<br>glycidyl<br>methacrylate) | 100μm<br>I.D. | m-CEC                                                                        | <i>N</i> -(3,5-dinitrobenzoyl)leucine<br>diallylamide                                                                                                                                                           | acetonitrile/5mM<br>phosphate buffer<br>(pH 7)=80/20                         | N=61000/m,<br>Rs=2.0 (N-(3,5-<br>dinitrobenzoyl)I<br>eucine<br>diallylamide) | Effect of<br>hydrophilicity was<br>studied.                                                                                                            | [50] |
| N -(2-hydroxy-<br>3-<br>aliyloxypropyl<br>)-L-4-<br>hydroxyprolin                                     | (methacrylamid<br>e, piperazine<br>diacrylamide,<br>vinyl sulfonic<br>acid)                                                                  | 75μm<br>I.D.  | m-CEC,<br>ligand<br>exchange<br>mode, <i>in</i><br><i>situ</i><br>copolymeri | Asn, dopamine, α-methyl-dopamine,<br>α-methylphenylalanine, Tyr, Phe, Ser,<br>Thr, Trp                                                                                                                          | 50mM sodium<br>dihydrogenphsph<br>ate and 0.1mM<br>Cu(II) (pH4.6)            | α=2.649,<br>Rs=1.721 (α-<br>methyl-<br>dopamine)                             | Comparisons between<br>capillary LC, pressure-<br>assisted CEC and<br>without pressure-<br>assisted CEC.                                               | [51] |
| Lys-Tyr                                                                                               | adosorbed<br>capillary wall                                                                                                                  | 25μm<br>I.D.  | o-CEC                                                                        | Tyr, Phe, fenoprofen                                                                                                                                                                                            | 10mM Phosphate<br>buffer (pH<br>7.20)/2-<br>propapol=90/10                   | Rs=2.0<br>(fenoprofen),<br>N=560000/m<br>(N I.)                              | Run-to-run and day-to-<br>day reproducibility<br>were studied.                                                                                         | [52] |
| Lys-Ser-Туг                                                                                           | adosorbed<br>capillary wall                                                                                                                  | 10μm<br>I.D.  | o-CEC                                                                        | Tyr, Phe                                                                                                                                                                                                        | 10mM Phosphate<br>buffer (pH<br>6.86)/2-<br>propanol=50/50                   | (N.I.)<br>Rs=2.0 (Phe),<br>N=390000/m<br>(N.I.)                              | Run-to-run<br>reproducibility was<br>studied.                                                                                                          | [52] |
| L-Lys                                                                                                 | adosorbed<br>capillary wali                                                                                                                  | 10μm<br>I.D.  | o-CEC                                                                        | Phe                                                                                                                                                                                                             | 10mM Phosphate<br>buffer (pH<br>6.86)/2-<br>propanol=50/50                   | Rs=1.5 (Phe),<br>N=590000/m<br>(N.1.)                                        | Run-to-run<br>reproducibility was<br>studied.                                                                                                          | [52] |
| Macrocyclic antibi                                                                                    | otics                                                                                                                                        |               |                                                                              |                                                                                                                                                                                                                 | <u> </u>                                                                     |                                                                              |                                                                                                                                                        |      |
| vancomycin                                                                                            | 5 μm spherical<br>silica gel                                                                                                                 | 100μm<br>I.D. | p-CEC                                                                        | wafarin, hexobarbital                                                                                                                                                                                           | 0.1 %<br>triethylamine<br>acetate (pH<br>5)/acetonitrile=8<br>0/20           | α=1.28,<br>N=13300,<br>Rs=2.7<br>(wafarin)                                   | Effect of mobile phase<br>composition was<br>studied.                                                                                                  | [53] |
| vancomy <b>cin</b>                                                                                    | 5μm diol silica                                                                                                                              | 75μm<br>I.D.  | p-CEC, <i>in</i><br><i>situ</i><br>immobilisat<br>ion                        | thalidomide, alprenolol, atenolol,<br>bupivacaine, ephedrine, isoprenaline,<br>ketamine, metoprolol, phenylamine,<br>practolol                                                                                  | methanol/acetonit<br>rile/acetic<br>acid/triethylamin<br>e=80/20/0.2/0.2     | α=2.48,<br>N=115000/m,<br>Rs=2.52<br>(thalidomide)                           | Composition of mobile<br>phase (reversed phase<br>and polar organic<br>phase) was studied.                                                             | [54] |
| vancomycin                                                                                            | 5µm silica<br>particle                                                                                                                       | 75μm<br>I.D.  | p-CEC                                                                        | pindolol, alprenolol, atenolol,<br>fenoterol, metoprolol, sotalol,<br>propranolol, bupivacaine, labetalol,<br>verapamil, terbutaline, thalidomide,<br>ketamine, warfarin, coumachlor,<br>felodipine, binaphthol | acetonitrile/meth<br>anol/triethylamin<br>e/acetic<br>acid=20/80/0.1/0.<br>1 | N=190000/m,<br>Rs=13.8<br>(thalidomide)                                      | Organic modifier,<br>organic solvent ratio,<br>ionic strength, pH,<br>temperature and<br>voltage were<br>examined. Aqueous<br>and non-aqueous<br>mode. | [55] |
| teicoplanin                                                                                           | 5µm silica<br>particle                                                                                                                       | 100μm<br>I.D. | p-CEC                                                                        | tryptophan, DNB-Leu                                                                                                                                                                                             | acetonitrile/water<br>=50/50                                                 | N=29000/m,<br>Rs=1.74<br>(tryptophan)                                        | Composition of mobile<br>phase, temperature and<br>reproducibility were<br>studied.                                                                    | [56] |

| teicoplanin                                                      | 5µm silica<br>particle                         | 75μm<br>I.D.           | p-CEC | wafarin, coumachlor, felodipine, 5,5-<br>diphenylhydantoin, tryptophan, 5-(4-<br>methylphenyl)-5-phenylhydantoin, N-<br>Z-glutamic acid, 5-(4-hydroxyphenyl)-<br>5-phenylhydantoin, benzoin,<br>terbutaline, ibuprofen, bupivacaine,<br>alprenolol, atenolol, fenoterol,<br>pindolol, sotalol, propanolol,<br>bupivacaine, labetalol, verapamil,<br>metoprolol, phenylpropanolamine, $\beta$ -<br>hydroxyphenethylamine, thalidomide,<br>ketoprofen, dopa | methanol/acetonit<br>rile/triethylamine/<br>acetic acid<br>=80/20/0.1/0.1       | N=136000/m,<br>Rs=3.27<br>(alprenoiol)       | Non-aqueuous polar<br>organic mode and<br>reversed-phase mode<br>were compared.                                                                                               | [57]     |
|------------------------------------------------------------------|------------------------------------------------|------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Proteins<br>bovine serum<br>albumin                              | cross-linked<br>gel<br>(glutaraldehyde)        | 75μm<br>I.D.<br>e      | m-CEC | tryptophan                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM potassium<br>phosphate (pH<br>7.5)                                         | N=91000,<br>Rs=6.0 (Try)                     | Capillary affinity gel<br>electrophoresis.                                                                                                                                    | [58]     |
| cellobiohydrol<br>ase I, bovine<br>serum albumir                 | )<br>l cross-linked<br>gel<br>n (glutaraldehyd | 75μm<br>I.D.<br>e      | m-CEC | atenolol, metoprolol, pindolol,<br>propranolol                                                                                                                                                                                                                                                                                                                                                                                                            | 50mM potassium<br>phosphate (pH<br>6.8) + 1% 2-<br>propanol                     |                                              | Effect of sample<br>volume on peak shape.                                                                                                                                     | [59]     |
| cellobiohydro<br>ase I                                           | l cross-linked<br>gel<br>(glutaraldehydd))     | 75μm<br>I.D.<br>e      | m-CEC | acebutolol, atenolol, metoprolol,<br>pindolol, prenalterol, propranolol                                                                                                                                                                                                                                                                                                                                                                                   | 50mM potassium<br>phosphate (pH<br>6.8) + 1% 2-<br>propanol                     | N=75000-<br>30000/m,<br>Rs=4.2<br>(pindolol) | Comparisons between<br>mobile phase additive<br>(cyclodextrin<br>derivatives) separation<br>mode, using chiral<br>stationary phase mode<br>and MIP mode.                      | [60]     |
| α <sub>1</sub> -acid<br>glycoprotein                             | 5μm particle                                   | 50μm<br>I.D.           | p-CEC | benzoin, hexobarbital, pentobarbital,<br>ifosfamide, cyclophosphamide,<br>metoprolol, oxprenolol, alprenolol,<br>disopyramide, propranolol                                                                                                                                                                                                                                                                                                                | 5% 1-propanol/5<br>mM phosphate<br>(pH 6.5)                                     | N=5800,<br>HETP=29mm<br>(benzoin)            | pH, electrolyte<br>concentration and<br>concentration of<br>organic solvent are<br>studied.                                                                                   | [61]     |
| human serum<br>albumin                                           | 7µm silica<br>particle                         | 50μm<br>I.D.           | p-CEC | oxazepam, temazepam, benzoin                                                                                                                                                                                                                                                                                                                                                                                                                              | 4mM<br>phosphate(pH<br>7.0) + 2% 2-<br>propanol                                 | α=2.4,<br>N=7000/m<br>(temazepam)            | Type and<br>concentration of<br>organic modifier are<br>studied. Comparisons<br>between the mobile<br>phase additive mode<br>and using the<br>stationary phase mode.          | [62]     |
| bovine serum<br>albumin                                          | chemically<br>bond                             | 25 or<br>50μm<br>1.D.  | o-CEC | DNP derivatives (Ala, Glu, Phe, Pro),<br>lorazepam, oxazepam                                                                                                                                                                                                                                                                                                                                                                                              | 50mM Phosphate<br>buffer (pH6.0)                                                | Rs=4.64,<br>N=34000/m<br>(DNP-Ala)           | Comparison between<br>OTLC and CEC                                                                                                                                            | [63]     |
| lysozyme                                                         | adosorbed<br>capillary wall                    | 10μm<br>I.D.           | o-CEC | Trp, PTH-Asp, PTH-Thr, DNS-Leu,<br>mephenytoin                                                                                                                                                                                                                                                                                                                                                                                                            | 10mM Phosphate<br>buffer (pH<br>7.20)/2-<br>propanol=90/10                      | Rs=2.05,<br>N=110000/m<br>(DNS-Leu)          | Run-to-run<br>reproducibility was<br>studied.                                                                                                                                 | [52, 64] |
| cytochrome c                                                     | adosorbed<br>capillary wall                    | 25μm<br>I.D.           | o-CEC | Tyr, Phe, Trp, chrysanthemic acid,<br>DNS-Leu                                                                                                                                                                                                                                                                                                                                                                                                             | 10mM Phosphate<br>buffer (pH<br>6.86)/2-<br>propagol=80/20                      | Rs=4.1 (DNS-<br>Leu),<br>N=400000/m          | Run-to-run and day-to-<br>day reproducibility<br>were studied.                                                                                                                | [52]     |
| avidin                                                           | adosorbed<br>capillary wall                    | 28 or<br>50μm<br>I.D.  | o-CEC | ketoprofen, flubiprofen, ibuprofen,<br>warfarin, adenochrome<br>semicarbazone, chlormezanone, DNS<br>derivatives (Ser, Met, Thr, Val,<br>norleucine, $\alpha$ -amino- <i>n</i> -butyric acid,<br>Trp) abscisic acid, suprofen                                                                                                                                                                                                                             | 10mM Phosphate<br>buffer (pH<br>5.95)/methanol=8<br>5/15                        | Rs=1.51,<br>N=186600/m<br>(ketoprofen)       | Buffer pH, organic<br>modifier, applied<br>voltage and<br>temperature were<br>examined. Run-to-run,<br>day-to-day and<br>column-to column<br>reproducibility were<br>studied. | [65]     |
| Quinine-based ani<br><i>tert.</i> -butyl<br>carbamoyl<br>quinine | ion exchange<br>5μm silica<br>particle         | 75 or<br>100μm<br>I.D. | p-CEC | Fmoc-Leu, DNZ-Leu, DNB-Leu                                                                                                                                                                                                                                                                                                                                                                                                                                | 50mM acetic<br>acid/acetonitrile=<br>20/80 (mixture<br>titrated to pH 6<br>with | α=2.16,<br>N=122000(DNZ<br>-Leu)             | pH, organic modifier,<br>buffer concentration<br>were studied.<br>comparisons between<br>HPLC and CEC.                                                                        | [66]     |

triethylamine)

| <i>tert</i> butyl<br>carbamoyl<br>quinine                                        | 3μm silica<br>particle                                                                                                    | 100μm<br>I.D.          | p-CEC                                                  | DNZ derivatives (Leu, Phe, Pro), Z<br>derivatives (Leu, Phe, Tyr), Fmoc<br>derivatives (Ala, Asn, Trp, Arg, Leu),<br>DNP derivatives (Phe, Lys, $\alpha$ -amino<br>caprylic acid, Phe, Ser), Bz-Leu, Bz-<br>Phe, Ac-Phe, Ac-Trp, dichlorprop,<br>suprofen, flurbiprofen, etodolac, | acetonitrile/meth<br>anol=80/20+400<br>mM acetic<br>acid+4mM<br>teiethylamine                     | N=106000/m,<br>Rs=6.9 (Fmoc-<br>Leu)                                 | Electrolyte<br>concentration, mobile<br>phase composition and<br>temperature were<br>studied. Nonaqueous<br>mobile phase.                                                                                                | [67] |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <i>tert.</i> -butyl<br>carbamoyl<br>quinene                                      | 1.5<br>(nonporous), 3<br>(porous) or<br>5μm silica<br>particle                                                            | 75 or<br>100μm<br>I.D. | p-CEC,<br>electrokinet<br>ic ally<br>packing           | Sulfingyrazone<br>DNZ-Leu, Fmoc-Leu, DNB-Leu, 1,1'-<br>binaphthyl-2,2'-<br>diylhydrogenphosphate, Bz-Leu,<br>DNP-Val, Fmoc derivatives(Arg, Leu,<br>Phe, Trp, Asn)                                                                                                                 | acetonitrile/buffe<br>r=80/20 +<br>150mM 2-(N -<br>morpholino)etha<br>nesulfonic acid<br>(pH 6.0) | α=1.14,<br>N=120000/m,<br>Rs=4.32<br>(DNB-Leu)                       | Comparisons three<br>differnt types of silica<br>particles. Effect of<br>electric field strength,<br>temperature, pH,<br>buffer type and<br>concentration, organic<br>modifer type and<br>concentration were<br>examined | [68] |
| O -[2-<br>(methacryloyl<br>oxy)ethylcarba<br>moyl]-10,11-<br>dihydroquinid<br>ne | organic<br>polymer<br>a (ethylene<br>dimethacrylate<br>i , glycidyl<br>methacrylate or<br>2-hydroxyethyl<br>methacrylate) | 100μm<br>I.D.          | m-CEC                                                  | DNB-Leu, DNZ-Leu                                                                                                                                                                                                                                                                   | acetonitrile/meth<br>anol=80/20 +<br>400mM acetic<br>acid + 4mM<br>triethylamine                  | α=2.48,<br>N=74000/m,<br>Rs=22.57<br>(DNB-Leu)                       | Polymerization<br>conditions, monomer<br>and porogen were<br>studied.                                                                                                                                                    | [69] |
| O -[2-<br>(methacryloyl<br>oxy)ethylcarba<br>moyl]-10,11-<br>dihydroquinid<br>ne | a (ethylene<br>dimethacrylate<br>i , 2-<br>hydroxyethyl<br>methacrylate)                                                  | 100µm<br>I.D.          | m-CEC                                                  | DNP-Val, Fmoc-Leu, DNZ-Leu,<br>DNB-Leu, Bz-Leu Ac-Phe, Fmoc-<br>Val, Z-Phe, DNZ-Phe, DNP-Ser,<br>DNP-Gin, DNP-Leu, 2-(4-chloro-2-<br>methylphenoxy)propionic acid<br>(mecoprop), 2-(2,4,5-<br>trichlorophenoxy)propionic acid<br>(fenoprop)                                        | acetonitrile/meth<br>anol=80/20 +<br>600mM acetic<br>acid + 6mM<br>triethylamine                  | α=1.21,<br>N=242000/m,<br>Rs=6.28 (DNP-<br>Val)                      | Effect of pore size of<br>monolith and mobile<br>phase composition on<br>separations were<br>studied.                                                                                                                    | [70] |
| Cellulose derivativ<br>cellulose tris<br>(3,5-<br>dimethylpheny<br>lcarbamate)   | yes<br>coated<br>capillary<br>γ (0.025μm<br>thikness)                                                                     | 50µm<br>I.D.           | o-CEC                                                  | 1-(9-anthryl)-2,2,2-trifluoroethanol                                                                                                                                                                                                                                               | 40mM phosphate<br>buffer (pH<br>7)/acetonitrile=6<br>0/40                                         |                                                                      | Temperature was<br>examined.<br>Comparisons between<br>HPLC, OTLC and                                                                                                                                                    | [71] |
| cellulose<br>tris(4-<br>methylbenzoa<br>e)                                       | coated<br>capillary<br>t (0.025µm<br>thikness)                                                                            | 50μm<br>I.D.           | o-CEC                                                  | glutethimide, aminoglutethimide,<br>mephobarbital, 1-(1-naphthyl)ethyl<br>alcohol                                                                                                                                                                                                  | 40mM phosphate<br>buffer (pH<br>7)/acetonitrile=8<br>0/20                                         | α=1.69,<br>N=36700,<br>Rs=2.8<br>(glutethimide)                      | CEC.<br>Coating thickness and<br>organic modifier were<br>examined.<br>Comparisons between<br>HPLC, OTLC and<br>CEC                                                                                                      | [71] |
| cellulose<br>tris(3,5-<br>dimethylphen<br>lcarbamate)                            | 5μm silica<br>particle<br>y                                                                                               | 100μm<br>I.D.          | p-CEC,<br>with and<br>without<br>pressure-<br>assisted | indapamide                                                                                                                                                                                                                                                                         | 20mM sodium<br>citrate(pH<br>7.0)/acetonitrile=<br>55/45                                          |                                                                      | Comparisons between<br>pressure-driven and<br>electrically-driven<br>CEC.                                                                                                                                                | [72] |
| cellulose<br>tris(3,5-<br>dimethylphen<br>lcarbamate)                            | 5 or 7µm<br>macroporous<br>y silica particle                                                                              | 100μm<br>I.D.          | p-CEC,<br>electrokinet<br>ically<br>packing            | benzoin, indapamide, <i>trans</i> -stilbene<br>oxide, glutethimide, lorazepam, α-1-<br>hydroxyethylnaphthalene                                                                                                                                                                     | 20mM sodium<br>citrate(pH<br>5)/water/acetonitr<br>ile=10/20/70                                   | $\alpha$ =1.21,<br>N=20000/m,<br>Rs=1.26<br>(glutethimide)           | Content of modifier,<br>concentration and pH<br>of the mobile phase<br>were studied.<br>Comparions between<br>capillary-LC and CEC                                                                                       | [73] |
| cellulose<br>tris(3,5-<br>dimethylphen<br>lcarbamate)<br>(Chiralcel<br>OD)       | 3 or 5µm silica<br>particle<br>y                                                                                          | 100μm<br>I.D.          | p-CEC                                                  | pindolol, propranolol, 4-phenyl-2-<br>butanol, benzoin, indapamide,<br>homatropin, wafarin, verapamil,<br>enilconazole, ibuprofen, 3-<br>phenylbutyric acid                                                                                                                        | 50mM phosphate<br>buffer(pH<br>4.0)/acetonitrile=<br>30/70                                        | α=1.19,<br>N=34000/m,<br>HETP=7.1<br>(homatropine)                   | Comparisons between 3µm and 5µm silica particles.                                                                                                                                                                        | [74] |
| amylose<br>tris(3,5-<br>dimethylphen<br>lcarbamate)<br>(Chiralpak<br>AD)         | 5μm widepore<br>aminopropylsil<br>y ica particle                                                                          | 100μm<br>I.D.          | p-CEC,<br>non-<br>aqueous                              | thalidomide, 5-hydroxythalidomide, <i>cis</i> -5'-hydroxythalidomide                                                                                                                                                                                                               | methanol/ethanol<br>=75/25 + 2.5mM<br>ammonium<br>acetate                                         |                                                                      | Comparisons between<br>HPLC, capillary LC<br>and CEC. Preparation<br>of a column packed<br>with mixture of<br>Chiralpak AD,<br>Chiralpak AD and<br>aminopropolysilica                                                    | [75] |
| amylose<br>tris(3,5-<br>dimethylphen<br>lcarbamate)<br>(Chiralpak<br>AD)         | 5μm widepore<br>aminopropylsil<br>y ica particle                                                                          | 100μm<br>I.D.          | p-CEC,<br>non-<br>aqueous                              | aminoglutethimide, <i>trans</i> -stilbene<br>oxide, metomidate, piprozolin                                                                                                                                                                                                         | 10mM<br>ammonium<br>acetate in ethanol<br>(pH 7.7)                                                | α=3.23,<br>N=51000/m,<br>Rs=1.36 ( <i>trans</i> -<br>stilbene oxide) | pH and composition of<br>mobile phase were<br>examined.<br>Comparisons between<br>HPLC, capillary LC<br>and CEC.                                                                                                         | [76] |

|      | cenurose<br>tris(3,5-<br>dimethylpheny<br>lcarbamate)<br>(Chiralcel<br>OD) | 5µm widepore<br>aminopropylsil<br>ica particle  | 100μm<br>I.D. | p-CEC,<br>non-<br>aqueous                                     | piprozolin, giutethimide, etozolin,<br>Troeger's base, indapamide,<br>piprozolin                                                                                            | 10mM<br>ammonium<br>acetate in<br>methanol (pH<br>7.7)                      | α=2.01,<br>N=24000/m,<br>Rs=1.55<br>(piprozolin)                     | pH and composition of<br>mobile phase were<br>examined.<br>Comparisons between<br>HPLC, capillary LC<br>and CEC                                                | [76] |
|------|----------------------------------------------------------------------------|-------------------------------------------------|---------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | cellulose<br>tris(4-<br>methylbenzoat<br>e) (Chiralcel<br>OJ)              | 5µm widepore<br>aminopropylsil<br>ica particle  | 100μm<br>I.D. | p-CEC,<br>non-<br>aqueous                                     | <i>trans</i> -stilbene oxide, econazole, 2,2'-<br>diamino-6,6'-dimethylbiphenyl,<br>glutethimide                                                                            | 10mM<br>ammonium<br>acetate in<br>methanol (pH*<br>7.7)                     | α=1.35,<br>N=24000/m,<br>Rs=2.36 ( <i>trans</i> -<br>stilbene oxide) | pH and composition of<br>mobile phase were<br>examined.<br>Comparisons between<br>HPLC, capillary LC<br>and CEC                                                | [76] |
|      | cellulose<br>tris(3,5-<br>dichloropheny<br>lcarbamate)                     | 5mm<br>aminopropyl<br>silica particle           | 100μm<br>I.D. | p-CEC,<br>non-<br>aqueous                                     | 2-(benzylsulfinyl)benzamide, 2-<br>(benzylsulfinyl)-banzoic acid benzyl<br>ester, etozolin, piprozolin                                                                      | 2.5mM ammonia<br>acetate in<br>methanol (pH*<br>7.7)                        | N=213400/m,<br>Rs=1.84 (2-<br>(benzylsulfinyl)<br>benzamide)         | Amount of chiral<br>selector was examined.<br>Comparisons capillary<br>LC and CEC.                                                                             | [77] |
| Heli | cally chiral org                                                           | anic polymer                                    |               |                                                               |                                                                                                                                                                             |                                                                             |                                                                      |                                                                                                                                                                |      |
|      | poly-N -<br>acryloyl-1<br>phenylalanine<br>ethylester<br>(Chiraspher)      | 5µm silica<br>particle                          | 100μm<br>I.D. | p-CEC,<br>with and<br>without<br>pressure-<br>assisted<br>CEC | bendroflumethiazide                                                                                                                                                         | 50mM NaH <sub>2</sub> PO <sub>4</sub><br>(pH<br>8.0)/acetonitrile=<br>60/40 |                                                                      | Comparisons between<br>pressure-driven and<br>electrically-driven<br>CEC.                                                                                      | [72] |
|      | poly(diphenyl-<br>2-<br>pyridylmethyl<br>methacrylate)                     | 5μm wide-pore<br>aminopropyl<br>silica particle | 100μm<br>I.D. | p-CEC,<br>non-<br>aqueous                                     | benzoin acetate, methylbenzoin,<br>Troger's base, <i>trans</i> -stilbene oxide                                                                                              | 2.5mM<br>ammonium<br>acetate in<br>methanol (pH*<br>4.5)                    | N=5400<br>(methylbenzoin)                                            | Comparisons between<br>HPLC, capillary LC<br>pressure-assisted CEC<br>and without pressure-<br>assisted CEC.                                                   | [78] |
|      | poly(diphenyl-<br>2-<br>pyridylmethyl<br>methacrylate)                     | 5µm silica<br>particle                          | 100μm<br>I.D. | p-CEC,<br>non-<br>aqueous                                     | benzoin, methylbenzoin, ethylbenzoin,<br>isopropylbenzoin, benzoin acetate,<br>1,1'-binaphthyl-2,2'-diol, <i>trans</i> -<br>stilbene oxide, cyclbutyldianilide<br>carbamate | acetonitrile/water<br>=80/20 + 2.5mM<br>ammonium<br>acetate (pH* 4.5)       | α=2.79,<br>N=23000/m,<br>Rs=4.57 ( <i>trans</i> -<br>stilbene oxide) | Composition and type<br>of mobile phase were<br>studied. Contribution<br>of pressure-driven<br>flow and<br>electrokinetically<br>driven flow was<br>evaluated. | [79] |

ABBRIBATION,  $\alpha$ : separation factor, Ac: acetyl, Bz: benzoyl, DNB: dinitrobenzoyl, DNP: dinitrophenyl, DNS: dansyl, DNZ: *N*-3,5-dinitrobenzyloxycarbonyl, Fmoc: *N*-9-fluorenylmethoxycarbonyl, HETP: height equivalent to a theoretical plate, MES: 2-(*N*-morpholino)ethanesulfonic acid, MTH: methylthiohydantoin, N: theoretical plate number, NBD: 4-fluoro-7-nitro-2,1,3-benzoxadiazole, N.I.: Not identified, OTLC: open tubular liquid chromatography, \*pH: apparent pH, Rs: resolution, Z: benzyloxycarbonyl

## 2. Type of capillary

#### 2.1 Open tubular capillary

Open tubular capillary is coated by the chiral selectors physically or chemically onto the internal capillary wall and there is no packing material inside the capillary. The first report of enantiomeric separation using open tubular CEC (o-CEC) was described by Mayer and Schurig in 1992 (14). They coated the capillary wall with permethyl- $\beta$ -CD. The main drawback of o-CEC is low sample loading capacity, due to the low surface area of o-CEC (inner diameter of an o-CEC capillary is less than 50 µm and the thickness of coating is less than 1 µm). By etching the internal wall of the capillary, the surface area increased up to 1,000- fold and reduce the loading problem (15).

## 2.2 Packed capillary

In packed CEC (p-CEC), the capillary is filled with chiral modified particles, many of which are also used as packing particles for HPLC columns. p-CEC is the most common CEC mode and numerous numbers of commercially available LC packing materials with different selectivities are applicable. Packing particles for HPLC columns, however, suffer an end-capping treatment, which reduces the free silanol groups. The treatment reduces not only interactions between silanol and analyte, but also the EOF, which means separation time is extended. Some specially designed packing particles based on ion-exchange phase, organic polymer, sol-gel etc. have been developed to promote the EOF (16). A serious drawback of p-CEC is the difficulty of frit fabrication (frits prevent packing particles from flowing away). Frit fabrication with a good repeatability, permeability and durability is technically difficult, because the inner diameter of capillary is narrow (100-50 μm) and the frit length is very short (1-2 mm). Furthermore, the frit itself disturbs separation efficiency by encouraging bubble formation or by disturbing the flow profile of the mobile phase at the interface between the packed section and the frit (17-19). Bubbles lead to increase of baseline noise, and sometimes current breaks down which stop EOF. To prevent bubble formation, the separation can be performed under a pressurized condition, in which both inlet and outlet vials are pressurized by gas. The pressurizing system also helps to compensate for the slow EOF (20). Although the system is useful, the frit still deteriorates the separation efficiency. To overcome these frit problems, another mode of CEC, that is, m-CEC was developed.

## 2.3 Monolithic capillary

m-CEC consists of a single piece of porous solid packing material, without a frit. Gusev (21) defines this "monolithic stationary phases" as "a continuous unitary porous structure prepared by *in situ* polymerization or consolidation inside the column tubing and, if necessary, the surface is functionalized to convert it into a sorbent with the desired chromatographic binding properties." The monolithic structure is fixed to a capillary by chemical or physical interaction, which prevents it from being pushed out from the capillary by EOF or electrophoretic forces. There are two main methods of m-CEC preparation as follows :

(a) The monolithic structure is prepared by co-polymerization of a homogeneous mixture of chiral selector and monomer (acrylamide or methacrylate). After polymerization, chiral recognition is achieved either through (1) molecular recognition of analytes by the chiral selector, or (2) physical recognition of analytes in the cavities remaining throughout the monolithic. The latter, which is the basis for MIP separations, takes advantage of highly selective spatial recognition properties of the cavities, which similar to that of antibodies or receptors.

(b) The monolithic structure is prepared from slurry solution of CSP and monomer. After polymerization, CSP is encapsulated by porous polymer and is fixed within capillary.

These structural features do not cause frit problems. Furthermore, m-CEC is prepared in one step using *in situ* polymerization inside the capillary ; hence, preparation of m-CEC is easier than p-CEC. A serious problem in m-CEC is the limited choices of monomer. The monolithic structure needs to be porous, robust and stable and it also needs to be charged for EOF. Despite this problem, m-CEC is a popular trend in CEC.

There are several new trends in CEC research. One is the use of non-aqueous mobile phases. Many CSPs in HPLC obtained successful enantiomeric separation in non-aqueous mobile phases, such as ethanol or mixtures of hexane and iso-propanol (22, 23). Non-aqueous mobile phases have also been used in CEC. This method is attractive when solubility or stability problems exist in aqueous buffers, but run-to-run reproducibility problems still need to be solved (24). The other trends are hyphenation technology of CEC with mass spectrometry or CEC separation system on a chip. The details of these new trends have been reported in some papers including this special issue (25-27).

## 3. Chiral selectors

#### 3.1 CDs and modified CDs

CDs and modified CDs are the most widely used compounds as chiral selectors for enantiomeric separation in LC, GC and CE. CDs are cyclic oligosaccharides with truncated cylindrical molecular shapes, and have particular names,  $\alpha$ -,  $\beta$ - and  $\gamma$ -CD for those having six, seven and eight glucopyranose units, respectively. Guttman *et al.* reported the first enantiomeric separation using p-CEC with immobilized CDs in 1988 (28). In this study, polyacrylamide gel and  $\beta$ - or  $\gamma$ -CD were packed inside the capillary. These discharged compounds does not cause fast EOF, hence acidic analytes migrate toward the anode by electrophoresis with forming complexes with  $\beta$ - or  $\gamma$ -CD. Dansyl-Ser enantiomers were separated using this technique ( $\alpha = 1.12$ , N = 100,000/m).

Some o-CECs were prepared using CDs and modified CDs. These reports compared CEC with other separation methods (GC, HPLC, OTLC, SFC) using the same capillary (29-34). Li and Lloyd reported enantiomeric separations of neutral drugs and amino acid derivatives using p-CEC packed with  $\beta$ -CD modified particles (35). The separation efficiency is better than that of  $\beta$ -CD additives in the mobile phase. Leliévre *et al.* used hydroxypropyl- $\beta$ -CD as a chiral selector (36). Separation efficiency of p-CEC packed with the chiral selector was compared with that of ODS packed p-CEC with the chiral selector additive in the mobile phase. The latter method achieved higher selectivity and resolution in a shorter analysis time. Zhang *et al.* also used hydroxypropyl- $\beta$ -CD as a chiral selector for p-CEC (37). They packed particles with sulfate and separated acidic compounds within a short time.

Schurig and co-workers used permethyl- $\beta$ -CD as a chiral selector for enantiomeric separation of mephobarbital on both p-CEC and m-CEC (20, 38, 39). m-CEC obtained better efficiency than p-CEC. In another example of m-CEC, Végvári *et al.* prepared m-CEC from acrylamide gel containing 2-hydroxy-3-allyloxy-propyl- $\beta$ -CD as a chiral selector (40). They separated acidic, neutral and basic drugs using m-CEC. Koide and Ueno prepared m-CEC composed of acrylamide gel and allyl carbamoylated  $\beta$ -CD (41-45). Allyl carbamoylated  $\beta$ -CD was trapped inside the gel by chemical or physical interactions. Acidic, neutral and basic drugs were separated enantiomerically by m-CEC and mephobarbital showed a good enantiomeric separation ( $\alpha = 1.03$ , N = 224,000/m).

#### 3.2 Small molecules (amino acid derivatives and Pirkle type)

Some amino acid derivatives or drug derivatives are used as chiral selectors in HPLC. These chiral selectors make it easy to reverse the elution order of enantiomers by changing a configuration of the chiral selectors. Wolf *et al.* modified 3 µm silica particles with (*S*)-naproxen and (3 *R*, 4 *S*)-Whelk-O for p-CEC, and separated more than 30 neutral compounds (46, 47). Enantiomeric separation of N-[1-(4-bromophenyl)]-2,2-dimethylpropionamide showed good efficiency (Rs = 30.95, N = 200,000/m).

Fluorescently derivatized amino acids and non-protein amino acids were separated by a p-CEC packed with 5  $\mu$ m aminopropyl silica-gel modified with (*S*) -*N*-3,5-dinitrobenzoyl-1-naphthylglycine (48). Amino acids and non-protein amino acids

Masaru Kato and Toshimasa Toyo'oka

were derivatized with the fluorogenic reagent, 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole (NBD-F). Resolution ranged from 1.21 to 8.29, with a plate height from 8.7 to 39 µm. NBD-amino acids were also separated by m-CECs packed with 5 µm aminopropyl silica-gel modified with (S)-N-3,5-dinitrobenzoyl-1-naphthylglycine and (S)-N-3,5-dinitrophenylaminocarbonyl-valine (49). These modified particles were fixed within a capillary by porous monolithic structure, which was prepared by sol-gel reaction. The m-CEC prepared by (S)-N-3,5-dinitrobenzoyl-1-naphthylglycine showed better enantiomeriseparation than that bv (S) - N - 3, 5dinitrophenylaminocarbonyl-valine. The other m-CEC was prepared by co-polymerization of 2-hydroxyethyl methacrylate (N-Lvaline-3, 5-dimethylanilide) carbamate and acrylamide (50). N-(3, 5-dinitrobenzoyl) leucine diallylamide enantiomers were separated by the m-CEC with a resolution of 2, and theoretical plate number for the first eluted enantiomer of 61,000/m. Schmid et al. prepared m-CEC composed of polyacrylamide gel containing N-(2-hydroxy -3-allyloxypropyl)-L-4-hydroxyproline (51). They added copper in the mobile phase and separated amino acids and biological compounds by ion-exchange mode ( $\alpha$ -methyl-dopamine :  $\alpha = 2.65$ ). Liu et al. used amino acid (Lys) or peptides (Lys-Tyr and Lys-Ser-Tyr) for chiral selectors for o-CEC (52). These chiral selectors have positively charged and adsorbed onto the capillary wall by flushing a solution containing the chiral selectors into the capillary. These columns separated Phe, Tyr and fenoprofen with the resolution of 1.3 to 2.0.

## 3.3 Macrocyclic antibiotics

Macrocyclic antibiotics are popular for chiral selectors in HPLC. These selectors have both a binding site (hydrogen bonding,  $\pi$ - $\pi$  interaction, etc.) and a cavity for forming the host-guest complex. Dermaux used vancomycin as a chiral selector for p-CEC (53). Owens and co-workers also used vancomycin as a chiral selector (54, 55). They separated drugs (β-blocker and nonsteroidal anti-inflammatory drugs) using polar organic and reversed-phase mode. The resolution and theoretical plate number for thalidomide was 13.8 and 190,000, respectively. Another macrocyclic antibiotic, teicoplanin, was also used as a chiral selector for p-CEC. Carter-Finch and Smith separated tryptophan enantiomers; the HETP of the first eluted enantiomer was 56 µm and the resolution was 1.17 (56). About 30 enantiomers (β-blocker, nonsteroidal antiinflammatory drugs etc.) were separated by the group of Owens (57). Resolution of tryptophan and alprenolol were 1.74 and 3.27, respectively, and theoretical plate numbers were 29,000/m and 136,000/m.

## **3.4 Proteins**

Proteins are also used as chiral selectors in HPLC. But composition of applicable mobile phase is restricted, because the threedimensional structures of proteins are dramatically changed by pH or organic modifiers in the mobile phase. Bovine serum albumin and cellobiohydrolase I was used as chiral selectors for m-CEC by Nilsson and coworkers (58-60). They used glutaraldehyde to entrap these proteins inside the capillary. Six β-adrenergic antagonists were separated by m-CEC. Li and Lloyd reported enantiomeric separations of 10 enantiomers using p-CEC packed with 5 µm particles modified with  $\alpha_1$ -acid glycoprotein (61). The theoretical plate number of benzoin was low (5,800), because the velocity of mass transfer is slow between protein and enantiomers. They also prepared a p-CEC packed with human serum albumin to separate 3 drugs (62). The theoretical plate numbers of the first eluted enantiomer of temazepam and the separation factor of it were 7,000/m and 2.4, respectively. Bovine serum albumin was used as chiral selector of o-CEC (63). Hofstertter et al. bound bovine serum albumin onto the capillary wall chemically and separated dinitrophenyl (DNP)-amino acids and 3-hydroxy-1,4-benzodiazepines. Lysozyme, cytochrome c and avidin were also used as chiral selectors of o-CEC (64, 65). These proteins were adsorbed onto the capillary wall through two kinds of force (electrostatic attraction and hydrophobic interaction). Lysozyme, cytochrome c and avidin column separated 5,5 and 16 enantiomers, respectively. Column-to-column reproducibility of the avidin column (1.1%) was superior to run-torun reproducibility of it (2.2%) (65).

#### 3.5 Quinine-base anion-exchange

Lindner and co-workers used anion exchange type CSPs modified with *t*-butyl-carbamoyl quinine as a chiral selector (66-70). Quinine has five chiral centers and two basic amino groups : the tertiary quinuclidine group and the aromatic quinoline group. These amino groups have a positive charge at low pH ; thus EOF moves towards the anodes. Anions migrated toward the anode (the same direction of the EOF), hence the anions eluted within a short time. Glutethimide was separated ; its resolution was 4.32 and theoretical plate number of the first eluted enantiomer was 120,000/m with *t*-butyl-carbamoyl quinine as a chiral selector. They also prepared m-CEC by co-polymerizing O-[2-(methacryloxy)-ethylcarbamoyl]-10,11-dihydroquinidine and methacrylate (69, 70). *N*-Derivatized aminoacids were separated by m-CEC and resolution of DNP-Val and theoretical plate number of the first eluted enantiomer of the first eluted enantiomer were 6.28 and 242,000/m, respectively.

## 3.6 Cellulose derivatives

Cellulose derivatives, amylose-tris (3,5-dimethylphenylcarbamate), cellulose-tris (3,5-dimethylphenylcarbamate) and cellulose tris (4-methylbenzoate), are some of the most popular chiral selectors in HPLC. CSPs packed with these chiral selectors separated a variety of enantiomers in HPLC. Hence, these chiral selectors have been used for CEC. First paper used the cellulose derivatives as chiral selectos for CEC was reported in 1996. Francotte and Jung coated cellulose-tris (3,5-dimethylphenylcarbamate) and cellulose tris (4-methylbenzoate) onto a capillary wall of o-CEC and separated some enantiomers (71). Cellulose tris (4-methylbenzoate) column separated glutethimide with respolution of 2.8 and theoritical platenumber of 36,700. Krause et al. prepared p-CEC packed with 5 µm silica particles modified with cellulose-tris (3,5dimethylphenylcarbamate) and separated indapamide enantiomers (72). Mayer et al. used the same chiral selector for p-CEC and separated glutethimide with a resolution of 1.26 and theoretical plate number of first eluted enantiomer is 20,000/m (73). Otsuka et al. used the same chiral selector and compared the effect of packing particle diameter (3 or 5 µm) (74). Blaschke et al. prepared p-CEC using amylose-tris (3, 5-dimethylphenylcarbamate), cellulosetris (3,5-dimethylphenylcarbamate) and cellulose tris (4methylbenzoate) as chiral selectors (75, 76). Separation efficiencies of these p-CEC are superior to those of HPLC in non-aqueous conditions.

#### 3.7 Helically chiral organic polymer

Helically chiral organic polymers have also been used as chiral selectors for p-CEC. Krause *et al.* used poly-*N*-acryloyl-L-phenylalanineethylester or poly(diphenyl-2-pyridylmethyl meth-acrylate) as chiral selectors (72, 78, 79). *trans*-Stilbene oxide enantiomers were separated by p-CEC containing poly (diphenyl-2-pyridylmethyl methacrylate) as a chiral selector. Their resolution was 4.57 and theoretical plate number was 23,000/m.

## 4. Conclusion

Enantiomeric separation by CEC has received considerable attention in recent years. Most reports on CEC showed better separation efficiencies than those in HPLC using similar columns. On the other hand, CEC is still limited with respect to application to the real samples, such as environmental or biological samples. CEC still has problems with column technologies, system stability and column-to-column reproducibility. Further improvements need to be demonstrated and also a wide variety of CSPs for CEC need to become available commercially, before CEC is applied to enantiomeric determination of real samples.

## ACKNOWLEDGEMENT

We gratefully acknowledge Aaron Ray Wheeler and Kumiko Sakai for valuable discussions and comments.

#### References

- Cikalo, M. G.; Bartle, K.; Robson, M. M.; Myers, P.; Euerby, M. R. Analyst 1998, 123, 87 R-102 R.
- [2] Fujimoto, C. Trends Anal. Chem. 1999, 18, 291-301.
- [3] Gubitz, G.; Schmid, M. G. J. Chromatogr. A 1997, 792, 179-225.
- [4] Schurig, V.; Wistuba, D. *Electrophoresis* 1999, 20, 2313-2328.
- [5] Gubitz, G.; Schmid, M.G.; Enantiomer 2000, 5, 5-11.
- [6] Lämmerhofer, M.; Svec, F.; Fréchet, J. M. J. *Trends Anal. Chem.* 2000, 19, 676-698.
- [7] Wistuba, D.; Schurig, V. *Electrophoresis* 2000, 21, 4136-4158.
- [8] Wistuba, D. ; Schurig, V. J. Chromatogr. A 2000, 875, 255-276.
- [9] Subrammanian, G. A Practical Approach to Chiral Separation by Liquid Chromatography; VCH: Weinheim, 1994; Chapter 3.
- [10] Ahuja, S. Chiral Separation by Liquid Chromatography; American Chemical Society : Washington, 1991; Chapter 1.
- [11] Remcho, V. T.; Tan, Z. J. Anal. Chem. 1999, 71, 248 A-255 A.
- [12] Takeuchi, T.; Haginaka, J. J. Chromatogr. B 1999, 728, 1-20.
- [13] Andersson, L. I. J. Chromatogr. B 2000, 745, 3-13.
- [14] Mayer, S.; Schurig, V. J. High. Res. Chromatogr. 1992, 15, 129-131
- [15] Pesek, J. J.; Matyska, M. T. J. Chromatogr. A 2000, 887, 31-41.
- [16] Pursch, M.; Sander, L. C. J. Chromatogr. A 2000, 887, 313
  -326.
- [17] Behnke, B.; Grom, E.; Bayer, E. J. Chromatogr. A 1995, 716, 207-213.
- [18] Carney, R. A.; Robson, M. M.; Bartle, K. D.; Mayers, P. J. *High Resolut. Chromatogr.* **1999**, *22*, 29-32.
- [19] Asiaie, R.; Huang, X.; Farnan, D.; Horvathe, C. J. Chromatogr. A 1998, 806, 251-263.
- [20] Wistuba, D.; Schurig, V. Electrophoresis 1999, 20, 2779-2785.
- [21] Gusev, I.; Huang, X.; Horváth, C. J. Chromatogr. A 1999, 855, 273-290.
- [22] Subrammanian, G. A Practical Approach to Chiral Separation by Liquid Chromatography; VCH: Weinheim, 1994; Chapter 8.
- [23] Ahuja, S. Chiral Separation by Liquid Chromatography; American Chemical Society : Washington, 1991; Chapter 3.
- [24] Chankvetadze, B.; Blaschke, G. *Electrophoresis* 2000, 21, 4159-4178.

- [25] von Brooke, A.; Nicholson, G.; Bayer, E. *Electrophoresis* 2001, 22, 1251-1266.
- [26] Chankvetadze, B.; Blaschke, G. J. Chromatogr. A 2001, 906, 309-363.
- [27] Uchiyama, K.; Xu, W; Hobo, T. Chromatography 2001, 22, 181-186.
- [28] Guttman, A.; Paulus, A.; Cohen, A. S.; Grinberg, N.; Karger, B. L.; J. Chromatogr. 1988, 448, 41-53.
- [29] Armstrong, D. W.; Tang, Y.; Ward, T.; Nichols, M. Anal. Chem. 1993, 65, 1114-1117.
- [30] Schurig, V.; Jung, M.; Mayer, S.; Negura, S.; Fluck, M.; Jakubetz, H. Angew. Chem. Int. Ed. Engl. 1994, 33, 2222-2223.
- [31] Szeman, J.; Ganzler, K. J. Chromatogr. A 1994, 668, 509-517.
- [32] Schurig, V.; Jung, M.; Mayer, S.; Fluck, M.; Negura, S.; Jakubetz, H. J. Chromatogr. A 1995, 694, 119-128.
- [33] Jakubetz, H.; Czesla, H.; Schurig, V. J. Micro. Sep. 1997, 9, 421-431.
- [34] Schurig, V.; Wistuba, D. Electrophoresis 1999, 20, 2313-2328.
- [35] Li, S.; Lloyd, D. K. J. Chromatogr. A 1994, 666, 321-335.
- [36] Lelievre, F.; Yan, C.; Zare, R. N.; Gareil, P. J. Chromatogr. A 1996, 723, 145-156.
- [37] Zhang, M.; EI Rassi, Z. Electrophoresis 2000, 21, 3135-3140.
- [38] Wistuba, D.; Czesla, H.; Roeder, M.; Schurig, V. J. Chromatogr. A 1998, 815, 183-188.
- [39] Wistuba, D.; Schurig, V. Electrophoresis 2000, 21, 3152-3159.
- [40] Végvári, Á.; Földesi, A.; Hetényi, C.; Kocnegarova, O.; Schmid, M. G.; Kudir kaite, V.; Hjertén, S. *Electrophoresis* 2000, 21, 3116-3125.
- [41] Koide, K.; Ueno, K. Anal. Sci. 1998, 14, 1021-1023.
- [42] Koide, K.; Ueno, K. Anal. Sci. 1999, 15, 791-794.
- [43] Koide, K.; Ueno, K. J. Chromatogr A 2000, 893, 177-187
- [44] Koide, K.; Ueno, K. Anal. Sci. 2000, 16, 1065-1070.
- [45] Koide, K.; Ueno, K. J. High Resol. Chromatogr 2000, 23, 59-66.
- [46] Wolf, C.; Spence, P. L.; Pirkle, W. H.; Derrico, E. M.; Cavender, D. M.; Rozing, G. P. J. Chromatogr. A 1997, 782, 175-179.
- [47] Wolf, C.; Spence, P. L.; Pirkle, W. H.; Cavender, D. M.; Derrico, E. M. *Electrophoresis* **2000**, *21*, 917-924.
- [48] Kato, M.; Dulay, M. T.; Bennett, B. D.; Quirino, J. P.; Zare, R. N. J. Chromatogr. A 2001, 924, 187-195.
- [49] Kato, M.; Dulay, M. T.; Bennett, B. D.; Chen, J. -R.; Zare, R. N. *Electrophoresis* 2000, 21, 3145-3151.

- [50] Peters, E. C.; Lewandowski, K.; Petro, M.; Svec, F.; Fréchet, J. M. J. Anal. Commun. 1998, 32, 83-86.
- [51] Schmid, M. G.; Grobuschek, N.; Tuscher, C.; Gübitz, G.; Végvári, Á.; Machtejevas, E.; Maruska, A.; Hjertén, S. *Electrophoresis* 2000, 21, 3141-3144.
- [52] Liu, Z.; Zou, H.; Ye, M.; Ni, J.; Zhang, Y. Electrophoresis 1999, 20, 2891-2897.
- [53] Dermaux, A.; Lynen, F.; Sandra, P. J. High Resol. Chronatogr. 1998, 21, 575-576.
- [54] Wikström, H.; Svensson, LA.; Torstensson, A.; Owens, P.
  K. J. Chromatogr. A 2000, 869, 395-409.
- [55] Karlsson, C.; Karlsson, L.; Armstrong, D.W.; Owens, P.
  K. Anal. Chem. 2000, 72, 4394-4401.
- [56] Carter-Finch, A. S.; Smith, N. W. J. Chromatogr. A 1999, 848, 375-385.
- [57] Karlsson, C.; Wikström, H.; Armstrong, D. W.; Owens, P. K. J. Chromatogr. 2000, 897, 349-363.
- [58] Birnbaum, S.; Nilsson, S. Anal. Chem. 1992, 64, 2872-2874.
- [59] Ljungberg, H.; Nilsson, S. J. Liq. Chromatogr. 1995, 18, 3685-3698.
- [60] Nilsson, S.; Schweitz, L.; Petersson, M. *Electrophoresis* 1997, 18, 884-890.
- [61] Li, S.; Lloyd, D. K. Anal. Chem. 1993 65, 3684-3690.
- [62] Lloyd, D. K.; Li, S.; Ryan, P. J. Chromatogr. A 1995, 694, 285-296.
- [63] Hofstetter, H.; Hofstetter, O.; Schurig, V. J. Microcol. Sep. 1998, 10, 287-291.
- [64] Liu, Z.; Zou, H.; Ni, J.; Zhang, Y. Anal. Chim. Acta 1999, 378, 73-76.
- [65] Liu, Z.; Otsuka, K.; Terabe, S. J. Sep. Sci. 2001, 24,17-26.
- [66] Lämmerhofer, M.; Lindner, W. J. Chromatogr. A 1998, 829, 115-125.
- [67] Tobler, E.; Lämmerhofer, M.; Lindner, W. J. Chromatogr. A 2000, 875, 341-352.
- [68] Lämmerhofer, M.; Tobler, E.; Lindner, W. J. Chromatogr. A 2000, 887, 421-437.
- [69] Lämmerhofer, M.; Peters, E. C.; Yu, C.; Svec, F.; Fréchet,
  J. M. J.; Lindner, W. Anal. Chem. 2000, 72, 4614-4622.
- [70] Lämmerhofer, M.; Svec, F.; Fréchet, J. M. J.; Lindner, W. Anal. Chem. 2000, 72, 4623-4628.
- [71] Francotte, E.; Jung, M. Chromatographia 1996, 42, 521-527.
- [72] Krause, K.; Girod, M.; Chankvetadze, B.; Blaschke, G. J. Chromatogr. A 1999, 837, 51-63.
- [73] Mayer, S.; Briand, X.; Francotte, E. J. Chromatogr. A 2000, 875, 331-339.
- [74] Otsuka, K.; Mikami, C.; Terabe, S. J. Chromatogr. A 2000,

887, 457-463.

- [75] Meyring, M.; Chankvetadze, B.; Blaschke, G. J. Chromatogr. A 2000, 876, 157-167.
- [76] Girod, M. ; Chankvetadze, B. ; Blaschke, G. J. Chromatogr. A 2000 887, 439-455.
- [77] Girod, M.; Chankvetadze, B.; Okamoto, Y.; Blaschke, G.

J. Sep. Sci. 2001 24, 27-34.

- [78] Krause, K.; Chankvetadze, B.; Okamoto, Y.; Blaschke, G. Electrophoresis 1999, 20, 2772-2778.
- [79] Krause, K.; Chankvetadze, B.; Okamoto, Y.; Blaschke, G. J. Micro. Sep. 2000, 12, 398-406.